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ABSTRACT

A frequently occuring problem is to find that probability distribu-

tion (PD) lying within a set 6 which minimizes the I-divergence between

it and a given PD R. This is referred to as the I-projection of R

onto 4. Csiazar (1975) has shown that when 6 = 4 is a finite

intersection of closed, linear sets, a cyclic, iterative procedure which

projects onto the individual 4 must converge to the desired I-

projection on 6 providing the sample space is finite.

TeBre-vepropose3 n iterative procedure which requires only that the
be convex (and not necessarily linear) which under general conditions

t
will converge to the desired I-projection~of R onto A o

7.
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AN ITERATIVE PROCEDURE

FOR OBTAINING I-PROJECTIONS

ONTO THE INTERSECTION OF CONVEX SETS

1. Introduction

Suppose P and Q are probability measures defined on subsets

of the finite set Z, which WLOG we take to be the first m positive in-

tegers. The I-divergence of P with respect to Q, also called the

Kullback-Leibler information number, cross entropy between P and

Q, information for discrimination, entropy of P relative to Q, etc.,

is given by

(1.1) I(PLIQ) - p(k) An P(k)
k-l q(k)

where p = (p(1),...,p(m)) and q = (q(1).,,,.q(m)) denote the

probability mass functions (PMF) of P and Q respectively. (In

general, we shall indicate a measure on subsets of Z by an upper

case letter (P,Q,R,S) and the associated Radon-Nikodym derivative

with respect to counting measure '(PMF) by the corresponding lower case

letter (pq,r,s).)

We mention that I(PQ) is defined analogously for general prob-

ability measures on infinite spaces, but for simplicity, we will only

coxisider finite sets. (See Kullback (1959), or Csiszar (1975) for the

general definition.)

It is well known that I(PjjQ) k 0, and that I(PjIQ) = 0 iff pmO.

* Thus it is hueristically reasonable to think of I(PjjQ) as representing

a "distance" between P and Q. However, I(. i.) is not a metric, nor
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* is the syunetrized version

I(PUQ) + I(QP)J(PIIQ) -'~QI.' 2

used by Jeffreys (1948).

Nevertheless,

m

(1.2) IP(k) - q(k)j s [2 I(PLIQ)]

as shown independently by Kullback (1967), Kemperman (1967), and Csiszar

(1967), so that we have some idea of what small values of I(PIQ) imply.

If we interpret I(PIIQ) as distance, it seems natural to define

the I-projection of the probability distribution (PD) R onto a set

8 of probability distributions as being a PD Q E 49 such that

I(QIR) < m and-_ WI

(1.3) I(QIIR) minIi P1)
PE4

In some sense, Q is the PD closest to R that lies within 8.

Minimization problems of the form (1.3) play a key role in the

information-theoretic approach to statistics (e.g. Kullback (1959), "

Good (1963), etc.) and also occur in other areas such as the theory of

large deviations (Sanov (1957)) and maximation of entropy (Rao (1965)

and Jaynes (1957)).

However, in statistical circles, I-projections are probably most

important for being dual problems to certain log-linear model maximum .-

likelihood estimation (MLE) problems. In particular, it is known that

the multinomial MLE problem

. .. -. .~.--~.-
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(1.4) max i p(k)n(k)

p (k)a:O, q k-l-':

E p(k)-1
in pEVZ

(where 7 is some subspace of Rm containing the constant vectors) has

precisely the same solution as the I-projection problem

(1.5) m n I(PJU)
P:S-P E

(where s(k) - n(k) (f n(i)) and U(k) - - is the uniform PMF). Note

that for a subspace spanned by the vectors a ,.-. ,a t , we have

- a,-.,a "  nfai]L,

and hence (1.4) is equivalent to

Inf I(PIIU) - Inf I(PLU).
t

'Enl (S.-J

Since the S-La I are linear spaces, Csiszar's algorithm of cyclic, iter-

ated I-projections is appropriate here. In this format, it is easy to

see the connection between Csiszarts procedure and the IPFP (iterative

proportional fitting procedure) which has received so much attention in

the general area of categorical data. Meyer (1980) has an extensive dis-

cussion and several examples where he relates Csiszar's procedure and the

general IPFP.

Suppose now that 7=K 1.-.+K t is a closed, convex cone expressible as a di-

rest sum of closed, convex cones containing the constant vectors rather than a

'I!

• , _:L. :. .-. ". . - . . - - . .' -. . .
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direct sum of subspaces. Such a configuration would arise naturally if

one were considering order constraints in a log-linear model. Then it is

well known that the dual (polar) cone of 74, defined as

m
- y;Jy(i)x(i) s0 for all x E74]

is expressible as

= (Kl+K +-+K t)*= Kn ... nK*t

In unpublished results, Dykstra has generalized the (1.4)-(1.5) duality

results to the case where 74 is a closed, convex cone (with 7t replacing

W in (1.5)). This means that many MLE problems involving partial orders

in log-linear models are equivalent to I-projection problems of the form

m I(PUU).

PEh (S-K*)

If the *'s are not subspaces, Csiszar's cyclic, iterated scheme need

i

not work. However, the procedure described in this paper will work since

the sets S-K* will be closed, convex sets of PD's.

Of course we would really like to be able to identify structure in

these log-linear model situations, which leads to the area of inference

for various competing models. While these are important questions, we

shall only be concerned with the MLE problem in this paper.

Caiazar (1975) discusses I-projections in great detail, and has

a "geometric" development for I-projections which is quite appealing.

(Cencov (1972) also has a geometric development of I-projections,

but with the arguments interchanged.) Caizar also discusses the exist-
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ence of I projections, and shows that if is a convex set of PD's

which is variation closed, the unique existence of the I-projection _

of R onto 4 is guaranteed provided there exists a P E 6 such that

I(PIIR) < a-. This result is clearly applicable for closed, convex sets

of PD's on the finite set Z. We shall make repeated use of the

elegant characterization of I-projections given in the following

theorem.

Theorem 1.1 (Csiszar). A PD Q E 6 (such that I(QIR) < w) is the I-

projection of R onto the convex set 4 of PD's iff

(1.4) I(PJR) I(Pl) + I(QIIR).4

Note that in our setting of finite Z, it follows from (1.1) that (1.4)

is equivalent to

(p(k) - q(k)) An(r(k) 0 E 4.
(1.5 k-ir(k)

If in fact Q is an algebraic inner point of 4, i.e. for every

P E 4(P#Q), there exists 0 < < I and P' E 4 such that

Q =CP + (1-u)P', equality must hold in (1.4) and (1.5).

This situation is roughly akin to projecting onto subspaces in

least squares theory. In particular, Csiszar defines an 4 to be

a linear set of PD's if P, P' E 4 implies caP + (I-a)P' E 4 for

every a for which it is a PD. If 4 is a linear set, then the

inequality sign in (1.4) and (1.5) may be replaced by an equality sign

as long as Z is finite. Based upon this characerization, Csiszar

- ". "'. . . . .-.-.'-.-. . ... . .. . - . . " 
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is able to prove that if Z is finite, 4 n f 4 is a finite

intersection of arbitrary linear sets, and there exists a P E 4 such

that I(PIIR) < -, then successive , cyclic, iterated I-projections

onto the individual sets must converge to the I-projection of R onto

4. Thus if Q0 - R, and Qn denotes the I-projection of Qn-1
,7 onto 4 (where 4 if n -t i, I < i < t), then Q

n n i n .

must converge to Q E 4 as n-m where I(QIR) - min I(PJJR).

This result is very much dependent upon the assumption that the

4 be linear sets (in fact it is not true in general) and the accompany-

ing fact that equality holds in (1.4).

.7.

2. The Procedure

We now propose a procedure which will enable one to obtain I-

projections onto a finite intersection of arbitrary closed, convex

sets of PD's by iteratively finding I-projections onto the individual

sets. We will prove that that under a mild restriction, the procedure

must give the correct solution, and then examine an example.

First let us note that we can still define I-projections for

-* non-negative vectors which are not normed to be PMF's onto sets of
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PD's. That is, for r > 0 (r$O), Q E 4 is an I-projection of

r onto a set of PD's i 1ff

m m pq~k ,,- (k)_._
q(k) in q(k) I( R) min I(PJIR) - min p(k) nP(k)

r(k) r(k)

and I(QIIR) <.

Of course, since 4 contains only PD's, the I-projection of

r onto a convex set 4 is identical to the I-projection of
m

r= r/ r(k) (r normalized to be a PHF) onto 6. It is easily

shown that the characterization of I-projections given in (1.4) and

(1.5) is still valid, even though I(PIIR) > 0 need no longer be

• true. (We note that multiplication and division of vectors will refer

to the operations being performed coordinatewise.)

Let us now state our algorithm. We assume we wish to find the
t

I-projection of r onto n 4=6, where 6i are closed, convex
;. 1

sets of PD's. We assume that we can project onto each (9 individ-

ually and shall denote the I-projection of S onto 4i by 1(94S).

"* We also assume there exits a PD T F J such that I(TIJR)< =.

1. Let S, 1 - R, and let 11 P( is We then set

p1  r P1 (We note that if s1,1 (k) 0, then1,•2 1 8lI

so is pl I(k). We take 0/0 to be 1.)

2. Let P12 - 9(d2 1S1 ,2)* Set S1,3 - P1 2  r Y l P1,2
S,1 a1,2

3. Continue, until Pl =  is where s - pl,t l

p1 1 Pi 1  p1 2 "1-t

r --.. . .- - Se ...... .

....~~ ~~ 8- .. .: - -"-"''-''""""- - - - 2,1 8. "." 8, "- """" "" " "" • ." ,. . . -' ,-ti. ".
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Note that a P it
*2,1 t8

p2 1  p1 3  _1_t

4. P2,1 - (1S2,1) Set s - r s , 3 ..2,2 s2,1 81,3 " ',t

or equivalently, s p /( . -..

2,2 2, 81,2

5. Continue. In general, set s = Pni-/n2 < i < t
n-1,i

and set a = e then let P 9(4 I), n;.

and define S (S if i t), etc.
n,i+1 n+1,l

Suppose now that the 4 are actually linear sets so that equality

holds in (1.5). Noting that for any P E i,

(2.1) I(PgSn,i) k£ p(k) An[p(k)/snfk)]

p p(k) An(p(k)/(p l(k)/Pn_,i(k)/Sn_j (k)))]
k

k~ ~~~~ ~~ Pni1 k  " pk nP-(k)

* (2.2) p(k) An p(k) +1p(k) A n-l ik ni-1 k k S n-1, i(k)

we observe that the last term must be equal to

SPn- 1,i(k) n-lik -Sn-lIJk)

and hence free of p. Thus the p E 4 which minimzes (2.1),

is also the one which minimizes the first part of (2.2), i.e., the

I-projection of P onto " It easily follows that our procedure
n ,i-1

. reduces to the cyclic, iterative procedure given by Csiszar when the -.

are closed linear sets.

. . . . .
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For a simple example to show that Csiszar's procedure does not work

for general convex sets, consider the following:

4 1. J P21 ' P2); Pll " P12' P21 P22' PiJ , -P21  P 2

P21, 22 pij"-': 2 = [\P21' P~d ll P21' P.12 > P22' PJ O l1Pij = ':; :::"

and

1 3
16 16

:."R = 7 "

\32 32/ 4/4

Csizar's procedure yields whereas is the correct

'- solution.

Everything hinges on the following theorem.

t
Theorem ~ ~ 2..Asm i where the 4 are closed, convex sets of

PD's and R d 0 is a nonnegative vector such that there exists a T E 4

where I(TIR) < M. If there exists a convergent subsequence p p

for some i such that

Pn i(k)

(2.3) lim inf (Pn (k) - p(k)) tn( >
i k ni

for every i, then pn,i P as n and P =9(41R) where

Pn,, and s are defined as in the proposed algorithm.
n~i n,i

Proof. Recall that p 6(aI Sn t where

n~• il .j

~ ~~~~~.-. ,. . . . . . . . . . . . . . . . . • - . . . . ..... . / .-.-. . ..'
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Pn 1 n,i-1. Pn-l,i+l pn-1,t

ni,1 n,i-L n-l,i+1 n-1,t

(2.4) p if i=I

= n,i-l( _ _Li if 2 < i < t.

Thus

UP n~ls ~ Pn 1,ilS-11

n -1,

p~ 8pn-llisn-1,

p

(2.5) E p I E p n( n-l , p- Innll-

n~i +(~LP~.1 if <i s tadsiial i i 1

p.i1nl ~ -,

...............



,,= , -- - - .-. , o,- - . S . '- .< -- ,;.-. . =!: _ - -;- - ''v. '-, - -- ..

since (by 1.4) the last term must be nonnegative because P n E .' n,i i..'

Noting that I(P n 1ieni I) > 0 since Pn± and P are PD's,

we have that I(P -s is nondecreasing in n for each i. Let* nin,i
us now show that these sequences are bounded above.

t
For V E si,

1""

v

I(vIIPv,i) n(-7)--
n,i ;

EP1 Pn p pn
fi vn v-" vtn rU- n - ni n-l,i+l nt

n, ni n-l,i+l n,t

t p
(2.6) vtn v- v nr- r viv n -IP iSa)J

Jinl Sa,j .-.

t Cn, i < i ::

- I(Pausa) where a-a,jlla,j) wh ~I7: J-1 Ln-1, J > i..-".

t
S I(VIIR ) - I(Pa,jI1Sa,j)

j--

by (1.4) and the fact that V belongs to every 8i" Thus, choosing

V such that I(VIIR) < m, we have a uniform upper bound on U S ).
Sini

'4 "

*V; a " .* --
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Hence the lrn I(P 4S) exists finite for every i, and by (2.5)

(2.7) I(Puuui.) 0 as n -)-,- for 2 -ci <t.

(Similarly I(Pn 11IP..i) 0 as n a.

VNote that (1.2) and (2.7) imply that if p - p for some i,

then p 1 +-bp for every i. Thus p fl a since p niiE and

the d are closed.
t

Using (1.5) and (2.3), for any v EI

4n ,
0 < lim iuf P(p. n

i j k jn n

pn
+ LI(v - I

I kk n
n

- lim inf E (4-p) Iu r nlj-- /r
j k i nil

k

Thus P 9 (1R) by (1.5). Setting V -P in (2.6) and using (2.3), it-

*follows that for the subsequence {



13

t I.; nilisni) +(JJ)

* However, by the ionotonicity in n of I(P n Sn) we have that

t I(P n~ilISn, i ) +I(P11R).

Thus '(PI¢JPI + 0, so that by (1.2) and (2.5), p 4 p as n +

for all i.

We remark that it would take rather surprising behavior of the

for condition (2.3) to not hold, and we strongly conjecture that

this condition is always true. As we note in the following corollary,

if the Pi+P(MIR), we must have sup E s (k) , and we have
in,i k ni

been unable to construct examples where this happens. We point out

" that when one uses the algorithm, they can put in a step to check the

value of sup E s  (k). If the algorithm is not going to converge
nnik

correctly, then this value must become excessively large. Otherwise,

the algorithm must converge to the correct solution.

Corollary 2.1. If the algorithm should not converge correctly, then

sup E S (k)- as n-*m.
n,i k

Proof. Suppose s (k) is uniformly bounded above, and p, + p
n,i nl

is a convergent subsequence (which must exist since 0< pn, (k) < 1).

If there exists 0 < a n (k) for all n1 ,k, then (2.3) follows

by standard continuity properties. If not, there exists at least one k

such that nj,i(k) takes on-arbitrarily small values. Then either

..,
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pj 1 (k) , 0 for all such k (which cause no problems), or there exists

a k such that p ni(k) -o p(k) > 0, while a (k) takes on arb-

trarily small values. This contradicts the uniform upper bound of

I(PnilSni)"

We recomsend that when one uses the algorithm, they should compute the
average value over an entire cycle ( p rather than a single

projection p 1  to estimate the I-projection. Convergence is still

guaranteed, and this value is much more stable and seems to converge much

more quickly to the correct solution.

3. An Example

To illustrate our algorithm, we consider nxn arrays of probabilities,
n n

say (Pkj), kJ > 0, kj i ,...,n, IF Pk . We denote the

n n
corresponding marginal PD's by p* k. pk  and p.j =-Pk kJ

(r)J= k-i1j ~
We now consider the problem of finding the I-projection of a

fixed array (r subject to the marginal PD's being stochastically

ordered, i.e. -

Pl. > P. , for all I.

(Kullback (1971) has given an iterative procedure for I-projections where

equality Is forced to hold for all 1, also known as marginal homogeneity.

Equivalently, we want to find the I-projection of (r kj) onto

n-i i n i n
(3.1) where -'l{(p );L p Y- P, })"

. . °- - Ii , m m io i E•1
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Note that the 4 are closed, convex sets of PD's which are not

linear sets. I-projections of (vkj) onto the 49 can be found by forc-

ing equality in the constraint if the (vk J) violate the constraint. (See

Theorem 2.11 of Barlow et al. (1972) which can be modified to apply to

arbitrary, convex fipmctions.)

To express P(40j V), we let

A IU(Lm; I < I < i, i+1 fm <n},

B {(t,m); 1 ~m <i, i+1 < n)

(I'm); L'm- ,..i U (tm;tm-i1..n

and v ( v Lvp)
A B~

if (v kj) satisfies the constraint of 4 ( v, 'M2 tmte
A, B ,m

P(d IV) -v /L v for all k,j.i k,j k,j 1 i

If (v) does not satisfy the constraint of 6 (v < v )then
ij A I'm BI'm

A B

Q(1I~ j vk~j ( [ 2 v1 + Lv~ (k,j) E B1i

Ai

[2 v,4. v(kij) E C'k,j ( ~ C ~
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The key point is that finding the I-projection onto '4 is

quite easy (and easily programmed), while finding the I-projection onto
n-1
=A 4 is very difiicult. However our algorithm enables one to find

the latter I-projection using only the ability to handle the I-projections

onto the individual 4.

To illustrate our example with some numbers, we consider some rather

famous data from Stuart (1953) concerning grades of unaided distance vision

for left and right eyes. If one wished to estimate the probabilities of

falling into the various categories, subject to the provision that right

eye vision is at least as good as left eye vision, one might find the

*I-projection of the data in Table 1 onto the 4 given in (3.1). Using

this algorithm, we have essentially obtained convergence to the true

I-projection by 3 cycles. These values are listed in Table 2 (with the

unrestricted MLE's given in parentheses).

This estimate might prove useful for constructing a likelihood ratio

type test for testing whether right eye vision is better than left eye

vision. This data is treated by Plackett (1981) who uses it for tests

involving marginal homogeneity and quasi-symmetry. It also appears in

Kendall (1974).

4. Acknowledgement
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Table 1

Unaided Distance Vision

(From Kendall (1974)).

___________ _______ LEFT EYE

Highest Second Third Lowest Totals
grade grade grade grade

Highest grade 821 112 85 35 1053

Second grade 116 494 145 27 782

Third grade 72 151 583 87 893

Lowest grade 43 34 106 331 514

Totals 1052 791 919 480 3242

Table 2

I-Projection of Data in Table 1

(Values in parentheses are Table 1 values normed

to sun to unity.)

_________ LEFT EYE _____

Highest Second Third Lowest Totals
Grade Grade Grade Grade

Hihs rd 2534 .0344 .0262 .0120 .3260
(.2532) (.0345) (.0262) (.0108) (.3247)

Second grade .0358 .1525 .0447 .0092 .2422
________(.0358) (.1524) (.0447) (.0083) (.2412)

Third grade .0222 .0466 .1799 .0298 .2785
(.0222) (.0466) (.1798) (.0268) (.2754)

grd 0120 .0095 .0295 .1022 .1532
1%Lowest gae (.0133) (.0105) (.0327) (.1021) (.1586)

Totals .3234 .2430 .2803 .1532 .9999

(.3245) (.2440) (.2834) (.1480) (.9999)

_ _I_ _-
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A frequently occurring problem is to find tnat probability distribution
(PD) lying within a set 4 which minimizes the I-divergence between it and a
given PD R. This is referred to as the I-projection of R onto J. Csiszar

(1975) has shown that when I = 1 is a finite intersection of closed, linear

sets, a cyclic, iterative procedure which projects onto the individual a, must
converge to the desired I-projection on 6 providing the sample space is
finite. (cont.)
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Here we propose an iterative procedure which requires only that the
" be convex (and not necessarily linear) which under general conditions will 1

converge to the desired I-projection of R onto ti 4
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